Organic Compounds: hydrocarbons and derivatives just C and H C, H, N, O, X, etc

Hydrocarbons: just C and H atoms

alkane: C-C	alkene: C=C	alkyne: C≡C	н н
$\begin{array}{c} H \\ H \\ H \\ - C \\ - C \\ - C \\ - H \\ H \\ H \\ sp^{3} \end{array}$	H H C=C H _{sp} ² H	H−C≡C−H sp	aromatic: $H-C''$ $C-H$ $C=C'_{sp^2}$

Alkanes are *saturated*: all C atoms are sp^3 , with four bonds to four atoms, C_nH_{2n+2} All other hydrocarbons are *unsaturated*: multiple bonds or rings, fewer than 2n+2 H atoms

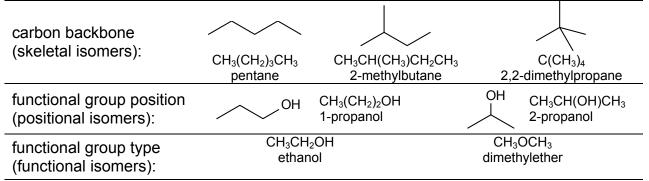
Representing Organic Compounds					
chemical formula	CH_4	C_2H_6	C_3H_8	C_4H_8	C_6H_6
condensed structural formula	CH ₄	CH ₃ CH ₃	CH ₃ CH ₂ CH ₃	CH ₃ CH ₂ CH=CH ₂	
structural formula (Lewis)	H H-C-H H	H H H-C-C-H H H	H H H H-C-C-C-H H H H	$\begin{array}{ccc}H&H&H\\H-C-C-C=C\\H&H&H\\H&H&H\end{array}$	H H H C C C C H H H H H H
line structure			\sim		$\langle \bigcirc \rangle$
Line structures each C.C. hand is a line. It stome					

Line structure: each C-C bond is a line, H atoms on C are omitted – *always four bonds to C!* Note: groups can rotate about a C-C single bond (σ only), but not a C=C double (σ + π)!

same molecule

different molecules

supe

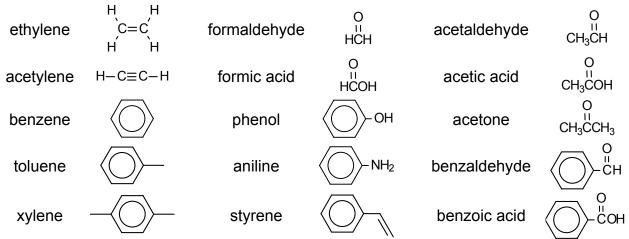

imposable

trans-butene

Isomers

Isomers: compounds with the same molecular formula, but different structures

• *Structural Isomers*: isomers that differ in the bonding arrangement and connectivity of atoms. Such isomers can differ in terms of:


- Stereoisomers: isomers that have the same connectivity, but differ in the spatial arrangement of atoms. There are two classes:
 - Geometric isomers: stereoisomers that differ in the relative orientation of substituents e.g. *cis*- and *trans*-alkenes
 - Enantiomers (or optical isomers): stereoisomers that are *chiral*, non-superimposable on a mirror image (Eğe Ch6)

Functional Group	Compound	Prefix/Suffix	Example	IUPAC Name (Common Name)
R-H	alkane	-ane	CH_3CH_3	ethane
C=C	alkene	-ene	H ₂ C=CH ₂	ethene (ethylene)
—C≡C—	alkyne	-yne	HC≡CH	ethyne (acetylene)
R-X	haloalkane	halo-	CH₃CI	chloromethane
R-OH	alcohol	-ol (hydroxy-)	CH₃OH	methanol
R-NH ₂	amine	-amine (amino-)	$CH_3CH_2NH_2$	ethylamine aminoethane
R-0-R	ether	ether (alkoxy-)	CH ₃ OCH ₃	dimethyl ether
R H	aldehyde	-al	O CH₃ĊH	ethanal (acetaldeyde)
R R	ketone	-one	O CH₃ĊCH₃	propanone (acetone)
О R-С О-Н	carboxylic acid	-oic acid	O CH₃ĊOH	ethanoic acid (acetic acid)
0 R-C 0-R	ester	-oate	O CH₃COCH₃	methyl ethanoate (methyl acetate)
0 R-C NH ₂	amide	-amide	O CH ₃ CNH ₂	ethanamide (acetamide)

Organic	Functional	Group	List
---------	------------	-------	------

R = alkyl group, an unfunctionalized saturated chain; X = halogen

Organic Common Names

